M.Sc. Physics 4th Semester (2055)

NUCLEAR PHYSICS-II

Paper : PHY-8041

Time Allowed: Three Hours] [Maximum Marks: 80

Note: —Attempt FIVE questions in all, selecting ONE question each from Units I to IV. Unit-V is compulsory to attempt.

UNIT-I

- 1. (a) Define Racah coefficients and state its symmetry properties. How it is related to 6-j symbols?
 - (b) Prove that the energy shift due to spin -orbit potential in the shell model increases with 1-values.
- 2. (a) Calculate the coupled state and corresponding C.G. Coefficients for the two particles with j = 1 and j = 1/2.
 - (b) Discuss the sell model based on Harmonic Oscillators
 Potentials. Also show how Bessel's function can lead to few magic numbers.

UNIT—II

3.		Define the Rotation matrix and explain how the rotation about an arbitrary axis X can be expressed in terms	
		Euler angles of rotation.	8
	(L)	W7. **	

- (b) Write a note on β and γ vibrations in spheroidal nucleus.
- 4. (a) What are nuclear rotational motion? Derive rotational energy spectra and nuclear wave functions for even -2 nucleus.
 - (b) Describe the parameterization of nuclear surface.

 How quadrupole deformation is represented in different co-ordinate systems?

UNIT-III

- (a) What are stripping and pick-up reactions? Explain with example. Discuss the relationship between angular momentum transferred in a direct reaction and the angular distribution of the emitted particles.
 - (b) What is optical model? What is the basis of optical model used in heavy ion fusion?

8

- 6. (a) Derive the Breit-Wigner Dispersion formula.
 - (b) Explain the statistical theory of nuclear reaction. 8

UNIT-IV

- Describe Nilsson model of nuclei and its use to explain 7. (a) 8 the nuclear properties. 8 Explain the phenomenon of Back-bending. **(b)** 8 Explain in detail the Cranking shell model. (a)
- 8.
 - Write a note on the production of super heavy elements. **(b)** 8

UNIT-V

- (a) Write down the shell model configurations for 30 Zn⁶⁷ and 9. 43 Tc99.
 - What are radioactive ion beams? (b)
 - How Nilsson models differ from shell model? (c)
 - In what situation the statistical model can be used for (d) fusion?
 - What are different types of nuclear reactions? Explain (e) with examples.
 - What do you mean by nuclear halos? **(f)**
 - What is iso-scalar vibrations? (g)
 - 8×2=16 What is Nordheim's Rule? (h)