(i)	Printed Pages: 3	Roll No
-----	------------------	---------

(ii) Questions :9 Sub. Code: 2 6 1 0 7 Exam. Code: 0 4 7 3

M.Sc. Physics 2nd Semester (2055)

CLASSICAL ELECTRODYNAMICS-I

Paper: PHY-8023

Time Allowed: Three Hours] [Maximum Marks: 80

Note: Attempt five questions in all, taking one question each from Units-I to IV and compulsory question from Unit-V.

UNIT-I

1. (a) Find the charge density and the total charge of the system which give rise to the electric field

$$E(x) = \frac{qe^{-\alpha r}}{r^3}x$$

- (b) Discussing the case of multipole expansion of the scalar potential of an arbitrary charge distribution, calculate expression for dipole field.
- 2. (a) Starting from the definition of magnetic field given by Biot Savart's law, calculate curl and divergence of magnetic field.

8

(b) Find force between two current carrying circuits and show that it obeys Newton's third law.

UNIT-II

- 3. (a) Derive Clausius Mossotti relation. 8
 - (b) Discuss the polarization of the material when field applied distort the spherical distribution of charge and produces induced dipole moment in case of non-polar molecules. 8
- 4. (a) Show that there is a potential drop of $4\pi D$ across a dipole layer distribution of strength D(x).
 - (b) A point charge is placed near a grounded conducting sphere. Find the surface density of charge induced on the sphere and force between the charge and the sphere.

UNIT-III

- (a) Derive law of conservation of energy for an electromagnetic field. Also explain Poynting vector for a wire carrying constant current.
 - (b) What do you mean by choosing a gauge? What is gauge transformation? Discuss Lorentz gauge.
- (a) Explain the propagation of electromagnetic waves in rare field plasma.
 - (b) Discussing the case of propagation of electromagnetic wave through a conducting medium, show that for the case of poor conductors, electric and magnetic fields are in phase.

UNIT-IV

7.	(a)	Explain the terms:			
		(i) Brewster angle			
		(ii) Total internal reflection of EM wave.	8		
	(b)	An em wave with its electric field vector parallel to the pl of incidence strikes a dielectric-dielectric interface. Ded			
		the reflection and transmission coefficients of energy.	8		
8.	-(a)	Write a note on center fed linear antenna.	8		
	(b)	Explain the concept of retarded potentials. Also desexpressions for retarded scalar and vector potentials.	rive 8		
UNIT-V					
9.	~(a)	What is skin depth?	2		
10	(b)	State Gauss's law in differential and integral form.	3		
	-(c)	What are Dirichlet and Neumann conditions?	.2		
	(d)	Obtain the boundary condition for the displacement ve	ctor.		
		•	3		
•	-(e)	How is TE mode distinct from TM mode?	3		
	(f)	Explain the differential form of Faraday law.	3		