(i)	Printed Pages: 4		Roll No				
(ii)	Questions	: 9	Sub. Code: 2	6	1	0	5
(-)			Exam. Code:	0	4	7	3
		M.Sc.	Physics 2 nd Semester (2055)				

MATHEMATICAL PHYSICS-II Paper: PHY-8021

Time Allowed: Three Hours]

[Maximum Marks: 60

Note: -- Attempt five questions in all, including Q.No. 9 (Unit-V) which is compulsory and selecting one question each from Units I-IV.

UNIT-I

- Define the terms: 1. (a)
 - Representation of a group (i)
 - (ii) Lie group
 - Structure constants of a Lie group. (iii)

6

(b) Show that if a group H of order h is a subgroup G of order 6 g then g is an integral multiple of h.

2. (a) Define multiplication table. Form a multiplication table of the group which has elements

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = 6$$

(b) List various applications of group theory in physics. 6

UNIT-II

3. (a) Find Fourier series expansion for periodic function of period 2π , $f(x) = x^2$, $-\pi \le x \le \pi$. Hence find the sum of the series

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots$$

(b) Show that if $\phi(p)$ is the Fourier transform of $\psi(x)$ then

$$<\hat{p}>=\int_{-\infty}^{\infty}\psi^{*}(x)\frac{\hbar}{i}\frac{d}{dx}\psi(x)dx.$$

- 4. (a) Show that the necessary and sufficient condition for f(t) to be real is g(-ω) = g*(ω) where g(ω) is the Fourier transform of f(t).
 - (b) The motion of a damped 1-D oscillator is given by $\psi''(t) + 2\psi'(t) + 5\psi(t) = 0$, with $\psi(0) = 2$ and $\psi'(0) = -4$. Use Laplace transforms to show that

$$\psi(t) = \sqrt{5}e^{-t}\cos(2t + \tan^{-1}(0.5))$$

UNIT-III

- (a) What are contravariant and covariant tensors? Explain inner and outer product of two tensors.
 - (b) Solve the equation $\phi(x) = \lambda \int_{-1}^{1} (t+x)\phi(t)dt$ for its Eigen values and Eigen functions.
- 6. (a) Show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor of rank 3.
 - (b) Develop an integral equation corresponding to the differential equation y''(x) y(x) = 0. Given y(1) = 1, y(-1) = 1 6

UNIT-IV

- (a) Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for
 - x 0 1 2 5 f(x) 2 3 12 147
 - (b) What are random numbers? Explain Monte Carlo technique to generate random numbers.

- (a) Explain Binomial, Poisson and Normal distributions. State central limit theorem.
 - (b) Use least square fitting method to fit a straight line to points (1, 1.7) (2,1.8) (3,2.3) (4,3.2) in XY plane.

UNIT-V

- 9. (a) What is a special Unitary group?
 - (b) Find Fourier transform of $f(x) = e^{-|x|}$.
 - (c) What is difference between Fredholm and Volterra integral equation?
 - (d) Define Greens function in one dimension.
 - (e) What is a metric tensor? Is it symmetric?
 - (f) Explain Euler method of solving differential equation.

6×2=12