(1)	Printed Pag	es:3	Roll No	0	•••••	•••••	••••••	•••••
(ii)	Questions	:9	Sub. Code:	2	5	9	4	3
			Exam. Code:		0	4	3	6

M.Sc. Bio-Technology 2nd Semester (2055)

ENZYMOLOGY AND ENZYME TECHNOLOGY Paper-MBIO-203

Time Allowed: Three Hours] [Maximum Marks: 80

Note:—Attempt FIVE questions in all. Q. No. 1 is compulsory.

Attempt ONE question from each unit. All questions carry equal marks.

- 1. (a) Define with example the concept of enzyme turnover number.
 - (b) What is meant by active site of enzyme?
 - (c) Explain competitive inhibition.
 - (d) Define allosteric interactions with an example.
 - (e) What are isoenzymes?
 - (f) How metal ions play role in enzyme catalysis?
 - (g) Give applications of biosensors.
 - (h) What are glycoproteins?

2×8

UNIT—I

2.	(a)	Describe the characteristics of enzymes and their	role ir				
		catalysis.	8				
	(b)	Explain enzyme classification and nomenclature examples.	e with 8				
3.	(a)	Explain how pH and temperature effect the enactivity.	nzyme 8				
	(b)	Explain with flow chart the extraction and purificat	ion of				
		enzyme from microorganism.	8				
		UNIT—II					
4.	(a)	Derive Michaelis-Menten equation and its significant	cance				
		in enzyme kinetics.	8				
	(b)	Discuss the Lineweaver-Burk plot and its importan	ce. 8				
5.	Wri	ite short notes on following:					
	(a)	Reversible and Irreversible enzyme inhibition.	5				
	(b)	Non-Competitive inhibition.	5				
	(c)	Hanes-Woolf equation.	6				
		UNIT—III					
6.		cuss acid-base and covalent catalysis with su					
		examples. 16					
7.	(a)	Describe the mechanism of enzyme action in					
		Polymerase.	6				
	(b)	Explain zymogen with example.	4				
	(c)	Explain multi-enzyme complex with example.	6				

UNIT-IV

- 8. (a) Describe the methods used for the extraction of membrane-bound enzymes.
 - (b) Explain the impact of membrane fluidity on enzyme activity.8
- What is enzyme immobilization? Describe different methods of immobilization and their applications.

300