Exam.Code:0440 Sub. Code: 25960

2055

M.Sc. (Bio-Informatics) Second Semester MBIN-8007: Statistics and Probability

Time allowed: 3 Hours

Max. Marks: 60

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting atleast one question from each Unit. Use of Statistical tables and simple calculator is allowed.

- 1. Answer the following:
 - i) Differentiate between discrete and continuous variable.
 - ii) Distinguish between deciles and percentiles.
 - iii) State the conditional probability theorem.
 - iv) Discuss about scatter diagram and its importance.
 - v) Under what conditions, the binomial distribution tends to Poisson distribution?
 - vi) Define null and alternative hypothesis with example.
 - vii) Discuss about box and whisker plot.
 - viii) Write ANOVA table for two-way classification.

 $\left(8\times1\frac{1}{2}\right)$

Unit-I

- 2(a). Explain the measures of central tendency with their merits and demerits.
- (b). Draw histogram and frequency polygon of the following data:

Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	12	16	19	17	14	12

3(a). Define the followings:

- i) Nominal and ordinal scale
- ii) Skewness and kurtosis
- iii) Quartile deviation and standard deviation.
- (b). Calculate Karl Pearson's Coefficient of skewness from the following data:

Size:	1	2	3	4	5	6	7
Frequency:	12	20	32	27	14	5	4

(6, 6)

Unit-II

- 4(a). Define the followings:
 - i) Independent and mutually-exclusive events with examples.
 - ii) Rank Correlation and Linear regression
- (b). The probability that a contractor will get a plumbing contract is 2/3 and the probability that he will not get an electrical contract is 5/9. If the probability of getting at least one contract is 4/5, what is the probability that he will get both?
- (c) A random variable X has the following probability function:

Value of X , x :	0	1	2	3	4	5	6	7
p(x):	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

(i) Find k, (ii) Evaluate P(X < 5), $P(X \ge 5)$, and P(0 < X < 6), (4, 4, 4)

5(a). Define the concept of correlation and discuss its various types with examples.

(b). From the following data:

<i>j</i> . 110	III the lone	owing data	•		1.			
X	18	20 -	21	17	19	20	24	22
Y	16	17	14	19	20	17	18	21

Obtain the line of regression of Y on X and estimate the value of Y when X=26.

(5, 7)

Unit-III

- 6(a). Define Bernoulli distribution and find its mean, variance and moment generating function (MGF). Under what condition it can be approximated to a binomial distribution.
- (b). Explain Mann Whitney test for testing a non-parametric problem. (7, 5)
- 7(a). Below are given the gain in weights (in kgs.) of pigs fed on two diets A and B.

Gain in weight

Diet A: 25, 32, 30, 34, 24. 14. 32, 24, 30. 31, 35, 25

Diet-B: 44, 34, 22, 10, 47, 31, 40, 30, 32, 35, 18, 21, 35, 29, 22

Test. if the two diets differ significantly as regards their effect on increase in weight (Given $\alpha = 5\%$).

- (b). Define the following:
 - (i) One way ANOVA
 - (ii) Central Limit Theorem
 - (ii) Poisson distribution

(6, 6)