(i) Printed Pages: 3 Roll No	(i)	Printed Pages: 3	Roll No
------------------------------	-----	------------------	---------

Bachelor of Computer Application (FYUP) 2nd Semester (2055)

COMPUTER ORGANIZATION

Paper: NBCA201

Time Allowed: Three Hours] [Maximum Marks: 90

Note :— Attempt ONE question from each unit and the compulsory question.

UNIT-I

- (a) Convert the following numbers as directed:
 - (i) (101101.101)₂ to decimal
 - (ii) (237)₈ to binary
 - (iii) (3F)₁₆ to decimal
 - (iv) (1001101)₂ to octal.

 $2\frac{1}{2} \times 4 = 10$

- (b) Explain the 1's and 2's complement method for representing negative numbers with examples.
 8
- 2. (a) Perform the following binary arithmetic operations:
 - (i) $(1101)_2 + (1011)_2$
 - (ii) $(1100)_2 (1001)_2$ using 2's complement
 - (iii) $(101)_2 \times (11)_2$
 - (iv) $(1100)_2 \div (10)_2$

 $2\frac{1}{2} \times 4 = 10$

1

(b) Explain error detection and correction codes with examples.

UNIT--II

- (a) Explain the characteristics of logic gates including fan-in, fan-out, power dissipation, and propagation delay.
 - (b) Simplify to Boolean expression using Karnaugh Map: $F(A, B, C, D_1) = \Sigma(0, 1, 3, 5, 7, 8, 9, 11, 15)$ 9
- (a) Explain the working of universal gates with necessary diagrams and conversions.
 - (b) State and prove DeMorgan's Theorems with truth tables.

UNIT—III

- 5. (a) Design a full adder circuit using two half adders and an OR gate.
 - (b) Explain the working of a 4-to-16 decoder using 2-to-4 decoders.
- 6. (a) Explain the working of multiplexers and demultiplexers with applications.
 - (b) Differentiate between serial and parallel adders with suitable diagrams.

UNIT-IV

7.	(a)	Describe the working of JK Flip Flop and explain he	ow	
		race-around condition can be avoided.	9	
	(b)	Differentiate between synchronous and asynchronous	us	
		counters.	9	
8.	(a)	Explain the working of different types of shift registers with		
		neat diagrams.	9	
	(b)	Design an up-down counter and explain its operation.	9	
		(Compulsory Question)		
9.	Ans	wer the following in brief:		
	(a)	What is BCD code? Give an example.	4	
	(b)	Explain the working of an excess-3 code.	4	
	(c)	Define the propagation delay in logic gates.	4	
	(d)	Differentiate between combinational and sequent	ial	
		circuits.	4	
	(e)	What is the significance of parity bits?	2	