- (i) Printed Pages: 3 Roll No.
- (ii) Questions : 8 Sub. Code : 1 7 5 4 3 Exam. Code : 0 0 0 6

B.A./B.Sc. (General) 6th Semester (2055)

MATHEMATICS

Paper-III: Numerical Analysis

Time Allowed: Three Hours] [Maximum Marks: 30

Note: — Attempt FIVE questions in all, selecting at least TWO questions from each unit.

UNIT-I

- 1. (a) Perform two iterations of Birge-Victa method to find the smallest positive root of equation $2x^3 5x + 1 = 0$, with initial approximation $P_0 = 0.5$. Also write the deflated polynomial.
 - (b) Find a real root of the equation $x^3 x 1 = 0$ by using the bisection method correct to three decimal places.

3,3

2. (a) Given f(0) = 3, f(1) = 12, f(2) = 81, f(3) = 200, f(4) = 100, f(5) = 8 find $\Delta^5 f(0.)$

(b) Given a table:

x	0.61	0.62	0.63	0.64	0.65	0.66	0.67
у	1.8404	1.8589	1.8776	1.9152	1.9155	1.9347	1.9542

Evaluate y(0.638) by Stirling's formula.

4

- 3. (a) If y(1) = -3, y(3) = 9, y(4) = 30, y(6) = 132 find the Lagrangian polynomial that takes the same values as y at the given points.
 - (b) Find $\frac{d}{dx}f(x)$ at 7.50 by using the following data:

X	7.47	7.48	7.49	7.50	7.51	7.52	7.53
f(x)	0.193	0.195	0.198	0.201	0.203	0.206	0.208

3,3

- 4. (a) Compute $\int_0^1 \frac{x}{x^3 + 10} dx$ with 9 ordinates by Simpson's 1/3 rule.
 - (b) Calculate, an approximate value of $\int_{-3}^{3} x^4 dx$ by taking

7 ordinates by Trapezoidal rule.

3,3

UNIT-II

5. Solve the following systems of equations by Gauss-Jordan elimination method :

$$2x_1 + 6x_2 - x_3 = -14$$
, $5x_1 - x_2 + 2x_3 = 29$, $-3x_1 - 4x_2 + x_3 = 4$.

6. Apply Cholesky's Method to solve the equations :

$$9x + 6y + 12z = 17.4$$
, $6x + 13y + 11z = 23.6$,
 $12x + 11y + 26z = 30.8$

7. Reduce the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}$ to the tridiagonal form

by Householder's Method.

6

8. Apply Runge-Kutta fourth order Method to solve $\frac{dy}{dx} = xy$ with y(1) = 5 for x = 1.1 given h = 0.1.