(i)	Printed Pages: 4	Roll No		

B.A./B.Sc. (General) 4th Semester (2055)

CHEMISTRY

(Same for B.Sc. Microbial & Food Technology)
Paper: XV Physical Chemistry-B

Time Allowed: Three Hours [Maximum Marks: 22

Note: — Attempt *five* questions in all, selecting *one* question each from Units I–IV. Question No. 9 (Unit-V) is compulsory.

UNIT-I

- (a) Draw labelled phase diagram of Mg-Zn system. Indicate clearly the eutectic points and congruent melting point on the diagram.
 - (b) Define Distribution Law. Discuss its application to establish the formation of complex ion I₃ according to the following equilibrium:

$$I^{-} + I_{2} \rightleftharpoons I_{3} \text{ (or } KI + I_{2} \rightleftharpoons KI_{3})$$

- (a) Draw the lead-silver phase diagram and illustrate the principle of 'Pattinson's Process' for enrichment of silver.
 - (b) Explain Critical solution temperature and discuss a system with upper CST.
 2

UNIT—II

- 3. (a) A solution of AgNO₃ was electrolysed with silver electrodes. Before electrolysis, 25 g of the solution contained 0.00265 g of Ag while after electrolysis 25 g of anodic solution contained 0.004294 g of silver. During the time of electrolysis 0.003210 g of silver were deposited in the silver voltameter. Calculate the transport number of Ag⁺ and NO₃ ions.
 - (b) Why Ostwald's dilution law is not applicable to strong electrolytes?
- (a) Briefly explain 'moving boundary method' for determination of transport numbers of K⁺ and Cl⁻ in KCl solution.
 - (b) Write Debye-Huckel-Onsager equation in complete form.
 What do different symbols signify?
 1
 - (c) Define Kohlrausch's law of independent migration of ions in terms of molar conductivity as well in terms of equivalent conductivity.

UNIT—III

5. (a) Describe the use of calomel electrode as a reference electrode for determination of electrode potential of any electrode.

	(b)	(b) The standard EMF of the cell Ni Ni ² Cu ² C is 0.59 vol			
		The standard electrode potential (reduction potent	ial) of		
	copper electrode is 0.34 volt. Calculate the standard el				
		potential of nickel electrode.	2		
5.	(a)	Explain how feasibility of a reaction can be predicted	d from		
		the measurement of E.M.F. of the cell.	2		
	(b)	What is Nernst equation? Describe its utility.	2		
UNIT—IV					
7.	(a)	What is 'overvoltage' ? How is it different from conce	ntration		
		polarization? Why is it reported at a definite	current		
		density?	2		
	(b)	Calculate the free energy change of the following	ng cell		
		at 25°C:			
		$Sn \mid Sn^{++} (a=0.6) \mid \mid Pb^{++} (a=0.3) \mid Pb$			
		Standard EMF of the cell is 0.014 volt.	2		
8.	(a)	Briefly explain the terms:			
		(i) Decomposition potential, and			
		(ii) Discharge potential.	2		
	(b)	Derive the relationship between activity of the ele	ectrolyte		
		with molality of the solution and mean activity coefficient of			
		the ions.	2		

UNIT-V

- 9. (a) Why specific conductance decreases with dilution?
 - (b) Why transport number of Cl in and aqueous solution of HCl and NaCl is different?
 - (c) How can the liquid junction potential be eliminated?
 - (d) What is Quinhydrone? What are the reactions occurring on the quinhydrone electrode?
 - (e) What are the advantages of potentiometric titrations?
 - (f) How many number of phases and components are present in the following systems?
 - (i) A mixture of molten Lead, Tin and Bismuth.
 - (ii) Two ice cubes floating on water in a closed container in the presence of water vapour. $6 \times 1=6$