(i) Printed Pages: 4

Roll No.

(ii) Questions : 14

Sub. Code: 0 8

0 8 2 7

Exam. Code: 0

0 1 1 4

Bachelor of Commerce 3rd Year

1046

OPERATIONS RESEARCH

Paper: VI Opt. (ii)

Time Allowed: Three Hours]

[Maximum Marks: 80

Note: Attempt any four questions from Section—A. Each carries 5 marks. Attempt any two questions from Section—B and any two questions from Section—C. Each carries 15 marks. Use of calculator is permitted. Graph paper to be provided.

SECTION-A

I. What are various limitations of linear programming?

5

II. What is Operation Research? Explain briefly its applications.

5

III. Obtain the dual of following L.P.P.:

Maximize
$$Z = 2x_1 + 3x_2 + x_3$$

subject to: $4x_1 + 3x_2 + x_3 = 6$
 $x_1 + 2x_2 + 5x_3 = 4$
 $x_1, x_2, x_3 \ge 0$.

5

IV. Solve the game:

5

V. Find (a) EOQ (b) Number of Orders (c) Total Inventory Cost using following information:

(i) Demand per month = 50 units

(ii) Price per unit = 6 Rupees

(iii) Ordering cost per order = 10 Rupees

(iv) Inventory carrying cost = 20% 5

VI. Four jobs can be processed on four different machines, one job on one machine. Resulting profits vary with assignments. They are given below:

		Machines					
		A	В	C	D		
	I	42	35	28	21		
Jobs	II	30	25	20	15		
	III	30	25	20	15		
	IV	24	20	16	12		

Find the optimum assignment of jobs to machines and the corresponding profit.

SECTION-B

VII. Write a note on significance and scope of Operation Research.

15

VIII. Use Simplex to solve:

Maximize
$$Z = 2x_1 + x_2 + 3x_3$$

subject to: $x_1 + x_2 + 2x_3 \le 5$
 $2x_1 + 3x_2 + 4x_3 = 12$
where $x_1, x_2, x_3 \ge 0$.

- IX. Old hens can be bought at Rs. 2 each and young ones at Rs. 5 each. The old hens lay 3 eggs per week and the young ones lay 5 eggs per week, each egg being worth 30 paise. A hen costs Re. 1 per week to feed. Mr. Amit has only Rs. 80 to spend for hens. How many of each kind should Mr. Amit buy to give a profit of at least Rs. 6 per week, assuming that Mr. Amit cannot have more than 20 hens. Solve the linear programming problem graphically.
- X. Consider a transportation problem with m = 3 and n = 4 where:

$$C_{11} = 2$$
 $C_{12} = 3$ $C_{13} = 11$ $C_{14} = 7$
 $C_{21} = 1$ $C_{22} = 0$ $C_{23} = 6$ $C_{24} = 1$
 $C_{31} = 5$ $C_{32} = 8$ $C_{33} = 15$ $C_{34} = 9$

Suppose $S_1 = 6$, $S_2 = 1$, $S_3 = 10$ and $D_1 = 7$, $D_2 = 5$, $D_3 = 3$ and $D_4 = 2$.

Apply transportation method to find out an optimal solution.

SECTION-C

- XI. (a) Pure strategy versus Mixed strategy.
 - (b) State the circumstances where CPM is a better technique of project analysis than PERT. 15

15

XII. Solve the following game graphically:

		Player A					
		I	II	III	IV	V	VI
Player B	I	1	3	-1	. 4	2	6
	II	-3	5	6	2	3	0

15

XIII. Find the sequence that minimizes the total elapsed time (hours) required to complete the following tasks on two machines. Also find total elapsed time:

Task	i.	A	В	C	D	Е	F	G	Н	I
Machine I		2		4	9			7		4
Machine II		6	8	7	4	3	9	3	8	11

XIV. The activities involved in a PERT project are given below:

Activity		1 January British Del				
	t _o	t	t t			
1–2	3	6	15			
2–3	6	12	30			
3–5	5	11	17			
7–8	4	19	28			
5-8	1	4	7			
6–7	3	9	27			
4-5	3	6	15			
1-6	2	5	14			
2-4	2	5	8			

- (a) Draw network diagram.
- (b) Find critical path.
- (c) Find probability of completing project before 31 weeks.
- (d) What is chance of project duration exceeding 46 weeks?