- (i) Printed Pages: 4 Roll No.
- (ii) Questions : 14 Sub. Code : 0 8 7 4

Exam. Code: 0 0 2 3

Bachelor of Business Administration 3rd Semester

(1129)

OPERATION RESEARCH

Paper—BBA-202

Time Allowed: Three Hours

[Maximum Marks: 80

- Note:— (1) Attempt any *four* questions from Section-A. Each question carries 5 marks.
 - (2) Attempt any *two* questions each from Section-B and Section-C. Each question carries 15 marks.

SECTION—A
$$(4\times5=20)$$

I. Solve the game:

B

II. Solve the LPP:

$$Z(max) = 3x_1 + 4x_2$$

sub. to : $x_1 - x_2 \le -1$
 $-x_1 + x_2 \le 0$

III. Solve the transportation problem:

Warehouse		W_1	W_2	W_3	Supply
	A	7	6	9	20
Plant	В	5	7	3	28
	C	4	5	8	17
	Demand	21	25	19	65

IV. Solve the following Cost Matrixed Assignment:

Machine

- V. Define Operation Research.
- VI. Explain 'MaxMin-MiniMax principle'.

VII. Solve the Transportation Problem and Test its optimality:

	Centres					Available	
	A	10	8	7	12	500	
Factories	В	12	13	6	10	500	
	С	8	10	12	14	900	
	Demand	700	550	450	300	1900	

VIII. Solve the Assignment in Minimisation:

		Cou	rses	
	2	10	9	7
Professors	15	4	14	8
	13	14	16	11
	4	15	13	9

Above figures are the preparation time for all courses.

IX. Solve the LPP by Simplex Method:

$$Z(max) = 10x_1 + 5x_2$$

sub. to : $4x_1 + 5x_2 \le 100$
 $5x_1 + 2x_2 \le 80$
where $x_1 x_2 \ge 0$

X. Explain the role of Operation Research in Management.

- XI. Explain M/M/I and M/M/S queuing models in detail.
- XII. Determine the optimal sequencing and total elapsed time of \overrightarrow{AB} .

Jobs	1	2	3	4	5-	6
Machine A	7	4	2	5	9	8
Machine B	3	8	6	6	4	1

XIII. Explain the dominance principle in game theory using the following example:

	$\mathbf{B}_{_{1}}$	B_2	B ₃	B ₄
' A ₁	35	65	25	05
A_2	30	20	15	00
A_3	40	50	00	10
A ₄	55	60	10	15
	A_1 A_2 A_3 A_4	$ \begin{array}{c c} A_1 & 35 \\ A_2 & 30 \\ A_3 & 40 \end{array} $	$\begin{array}{c cccc} B_1 & B_2 \\ A_1 & 35 & 65 \\ A_2 & 30 & 20 \\ A_3 & 40 & 50 \end{array}$	A_1 $\begin{vmatrix} 35 & 65 & 25 \\ A_2 & 30 & 20 & 15 \\ A_3 & 40 & 50 & 00 \end{vmatrix}$

XIV. Explain the following terms:

- (1) Pay off Matrix
- (2) Saddle Point
- (3) Pure and Mixed Strategy
- (4) 'No Passing Rule' in Sequencing Problems
- (5) Dummy in Transportation Problem.